
TtTlE: NONLINEAR SIGNJIL PROCESSING usIN · NfURt NETWORKS:
PREOirTION ANO SYSTEM MODELLING

AUTHOO(S) Alan S. La:'ledes
Robert Farber

suoM:TTEOTO ProceC'd'ngs :_;!--IEEE

i.:

r

•r acc~111MU el a..ai...,............, •ecot"ll",.. U.S. 0••-11 ,_ .. , •-.--." ..,.... lleeft ... _.....;.., ·~
, ... ~lot., el ==*' "'°'"-er to ~ • .. M. lot U.S. b-Nft9'11.-i-
,.._ LOI~.._.__......__,. feQ\lfftl - ... '° ideMly _.. .. __ .., __ ,......,11'9..,.._el ... U.I OejNr"..-Oll-;o

. ;

'Ollll NO U. ..

Los Alar 'lC ·S National Laboratory
Los Alar lC·S.New Mexico 87545

-.

0

c:::

. -.

July 1987

NONLINEAR SIGNAL PROCESSING USING NfURAl Nl IWO~I'. '> :

PREDICTION ANO SY~TEM MODELLING

Alan Ldpedes
Robert Farber

Theoretical Division
Los Alamos National Laboratory

Los Alamos, NM 87545

A B S T R A C T

The backpropagation learning algorithm for neural networks
is deve 1 oped into a forma 11s111 for non 1 i near signal
processing. We illustrate the 111ethod by selecting two common
topics in signal processing, prediction and system
modelling, and show that nonlinear applications can be
handled extre111ely well by using neural networks. The
foraalis111 is a natural, nonlinear extension of the linear
Least Mean Squares a 1 gori tt. comon 1 y used in adapt f ve
signal processing. Si11Ulations are presented that document
the ' additional perfon11nce achieved by using nonlfnear
neural networks. Ff rst, we det1<>nstrate that the fonnal ism
may be used to predict points in a highly chaotic time
series with orders of ugnftude increase in accuracy over
conventional 11ethods including the linear Pt·edictive Method
and the Gabor-Volterra-Weiner Polyn0tnial Method. Oeter-
111inistic chaos is thought to be involved in many physical
situations including the onset of turbulence in fluids,
chemical reactions and plasma physics. Secondly, we demon
strate the use of the for11alis• in nonlinear system
110delHng by providing a graphic example in which it is
clear that the neural network has accurately model led the
nonlinear transf~r function. It is interesting to note that
the fonnaHs11 p.·ovides explicit, analytic, global, approx
i111atfons to the nonlinear maps underlying the various time
series. F urthennore, the neura 1 net see111s to be extremely
parsint0nious in its requirellM!nts for data points fr : :n the
time series . We show that the neural net is able to perform
well because it globally approximates the relevant maps
by performing a kind of genera 1 i zed mode decomposition of
the maps. Use of .trigonometric sin's, instead of the usual
siginoids, for the >neural net transfer function leads to a
type of generalized Fourier. analysis. One may also view the
approximation procedure -of the neural net in relation to a
spline fitting method, wtiich in many instances is known to
be preferrable to a simple polynomial fitt;ng method . ThP
specific simulations that are presented are intended t c.
illustrate ~ome of the capabilities of the formalism and .'i re
not thought to exhaust the range of application .

-
0

·t

-2-

I. Introductfon

Adaptive signal processing is a topic of con~id~rable practical

interest. A convnon approach to signal processing u!.es pn•rlominantly I inear

analysis. which n~t surprisingly, does not perform a!. w~l I as desired when

used to process signals emitted by. a nonlinear !.ystem. We !.how that a

natural extension of linear methods into the no~linear domain is provided

by the nonlinear neural net learning algorithm called "back

propagation . "(l) As explained in Section II, our technique stems from the

relatively simple idea of inserting "hidden units" (a layer of nonlinear

neuron-1 ike elements) into the 1 inear "Adaline" adaptation framework

of Widrow-Hoff, (Z). (J) and then using back propagation to control the

weights. The input and output elements are kept as 1 inear ele11ents in

order to provide an extended dynamic range. The original "Adal ine11 or

11 least Mean Square"{Z) adaptation rule (in wide use in llOdern signal

processing) inay be thought of as a learning rule for a totally linear

neural network. There is then a logical progression to the nonlinear

networks, that we use. which may be SUlllllarized as follows:

Adaline (Least Hean Square) -+ Widrow-Hoff -+ Perceptron .. Backpropagation

Back propagation so far, has mainly been used in situations where the

inputs and outputs of the network are nonlinear and achieve binary values.

That is, it has been predOftli nant ly used in processing s}'llbo 1 ic

infonnation. (1) letting the input and output neurons be linear elements

extends the. ·dynamic . range, and allows processing of real valued

inputs/outputs such as occur in signal processing applications . The

"hidden" nonlinear neurons use a continuous, nonlinear (and nonool y-

nomial)activation function. It is the ability to control nonlinear it~

in the neural net that allows prediction in chaotic time series with . an

-

. -.

-3-

accuracy far exceeding conventional methods. Chaotic lime series are

e~itted by deterministic nonlinear systems and are suffici~ntly complicated

that they appear to be "random" time series . However. because there is an

underlying deterministic map that generates the series there is a closer

analogy to pseudo random number generators than to stochastic randomness .

Nonlinear neural nets are able to perform wel 1 because they extract. and

very accurately approximate. these underlying maps. Deterministic chaos

has been implicated in a large number of physical situations including the

onset of turbulence in fluids;(4}, (S} chetaical reactions, (G) lasers. (7)

and plasma physics(S) to name but a few. Furthermore, chaotic systems can
..

also display the full range of less complicated nonlinear behavior (e.g.

attraction to a fixed point and limit cycles) if various parameters in the

system are changed. They therefore provide an excellent test bed in which

to investigate nonlinear signal processing techniques. We have selected

two chaotic time series: one generated by an explicit nonlinear iterated

111c1p (the logistic or Feigenbaum map) and another generated by a nonlinear,

differential delay equation (the Hackey-Glass equation). Prediction using

nonlinear neural networks exceeds conventional methods by orders of

magnitude in accuracy.

In addition to possible applications, the dotWain of real valued signal

processing also provides a nice setting in which to investigate properties

of the back propagation algorithm itself. One property, the ability to

fonn 1i mi ted genera 1 i zat ions, has frequently been tested with "symbo 1 ic"

(binary) inpu_t/output pairs. (1),(9) Unfortunately, it has been difficult
.

to obtain a really clean; example of this ability to generalize. On the

other hand, Section IV provides ~~n example in nonlinear system modelling in

which it is clear that the neural net has inferred from a finite data set

the correct algorithm that transforms input to output . The somewhat

mysterious ability of neural networks to "deduce" algorithms and to "gen-

-4-

eralize" is shown to be nothing more than real villued function inter-

polation when viewed in the context of signal pro<.•··.•,ing. lhe modeling

e><ample we cho-;.P. to analyze in Section IV is a "plcinl" (to u!>e control

system tennonoloqy) that implements x.(t) ·x:.:(t) (~ee I igure l} . Here x(t)

is an arbitrary input wave form and· the network hd~ to learn lo output

x2 (t) by learning on a training set consisting of input/output pairs that

are samples at discrete times . We trained the network on a set of

input/output pairs from a specific, broadband x(t). and used back

propagation to adjust the network weights. If the net correctly inferred

the algorithm x .. x2 (t) then input (after training) of a different,

arbitrary wave fornt x(t) should result in the correct x2 of the new signal .

This is the case. Furthenwore, if the input to the network is x(t) and

x(t - ~t), then the network output should be an approximation to (x(t) -

x(t - At]2/At2 . Thus, a graph of the output, x2, versus the inputs x(t),

x(t -At) should be an approximation parabolic trough. We plot the output

of the neural net versus x(t). x(t - . At) (see Figures 11, 12) and the

resultant parabolic trough is explicit graphic verification that the

network has indeed learned the correct algorithta frocn a finite set of

input/output pairs.

A competing approach to processing nonlinear signals would be to form

polynomials in the data tems (the polyn<>11fals providing nonlinearity in

the data) and to adjust the 1 inear weight factor coefficient for each

polynomial tena using the least Mean Square algorithtll. This approach was

advocated by, Gabor and is related to the Volterra-Weiner expansion(lO) of

nonlinear systems. It h.!s the advantage that polynomial nonlinearities may

be mode l led exactly, and that. one i s always assured of f~ nding a globa l

mi nimum to the LeaH Mean Square problem. Disadvantages, howeve r . a re

consi derabl e. Ff~st of all . nonpolynomial nonlinear ities mus t be mode ll ed

bv oo lvnomi als, which is widely known to be a undes i rab l e procedure due t o

.....

-s-

the rapid oscillation of polynomials. Secondly, one has ;111 explosion in

the number of the polynomial coefficients as the system si1r, or order of

the polynomial, is increased. Finally, a po lynomi a I •~ppro)(imat ion is

wildly unstable under iteration. Iteration, as we demonstr.1lt• in Section

III, is the key to achieving accurate predictions ovn long times.

Acceptable accuracy may be achieved by polynomial methods over short times,

which is clearly a much less interesting situation in comparison to long-

term predict ion. The non 1 i near neura 1 net is orders of magnitude more

accurate for long-term prediction. Finally, we demonstrate in Sections III

and IV that if the relevant system nonlinearity is indeed a polyno111ial,

then very good approxiutions to the polyn011ial 11c1y be achieved by using

non 1 i near nonpo lynat1i a 1 neura 1 nets. We therefore fee 1 that the non 1f near

neural net method presented here has considerable advantages in both

accuracy, and flexibflfty, over the MOre conventional methods.

The reason that the neural net fonaalis• for signal processing works

well see111s to be related to the fact th~t the network is performing a kind

of generalized 11ode decomposition of the underlying 111aps. Changing the

neurons 1 s transfer function frOll SiQllOids to sin~ changes the analysis

to a generalized Fourier analysis. Other nonlinear, neural transfer

functions are also possible and should be choosen to make a best match to

the problem at hand. Another interpretation (Section V) is related to

spline fitting procedures. The difference between mode decompoposition

vs simple polynoniial fitting, distinguishes neural networks from the Gabor

Weiner, Volter.ra polyno111fal analysis(lO) of nonlinear systems . .)

The examp·les of prediCtion and nonlinear system modelling were choosen

somewhat arbitrarily as a means to illustrate the capabilities of the

formalism. The success achieved in these examples might reasonably be

taken as an indicat'ion that further development of these methods could have

'

l

-6-

wider applicability. Results of experiments on '>pecific applications will

be reported elsewhere.

II. The Linear Predictive Method and Back Prop~tyation

·Prediction is a useful abili~y in siynal µrocessing that also has

application in many other areas such as data comµression . A common method

of prediction in signal processing is the Linear Predictive Method . (ll) In

this approach one uses the values of a continuous signal, x(t), at a set of

discrete times in the past, to predict x(t) at a point in the future . For

example, one might use three values in the past, x(t), x(t - ~). x(t - 2.l)

to predict a value that is some time in the future, perhaps x(t + ~). .l

is a time increment. The predicted value is a linearly weighted SUIR of the

delayed (past) x(t) values. Representing this algorithm in a diagram (Fig.

2) makes it clear that one can view this 1tethod as a linear, feedforward,

neural net with no •hidden units.• Each line in the figure linearly

weights the corresponding input so that the output is a linearly weighted

sum of input values. (See figure 2.)

The weight values, Tij are detennined in the Linear Predictive Method

by training the system using a set of discrete time samples from a segment

of known s i gna 1. labe 11 i ng the neurons from i = 0 to 3 yi e 1 ds (for Figure

2)

or more generally, if there is more than one output,

X. =I T.jxj + I.
1 • 1 ., 1

J ·. .)

. ,

(1)

(2)

For nonlinear neural nets I. "' is referred to as 11 threshold11 and we wi 11
1 .,

continue to use that notation even for linear networks . If we label

discrete times in the training set as tp, then Ti j may be determined

-
-
co

tC

·r

-7-

by m;n;m;zing the mean square error, E

E = .L [X.(t .~) - l. Ti.X.(t .~) - I.]2
;p 1 p j J J p 1

(])

In the above, i ranges over the output unit '. , •l"lich for th,. .. 1-t11CJ l e of

equatfon (1) contafns just one ten1 for ; = 3. p i ndexes tM t1i~cr,.tt'

tfMs fn the trainfng set. Thfs fs a usual. linear, IHst •~n sQuarH

problN that uy be solved, for example. by steepest descenh . Stnpett

descents h f llP 1 .. nted by 1uccess fve 1 y chang; ng Ti j by an a110unt .i T t j

where

•r _ _ • aE
... fj - .. IT:7"

f J
(4)

.mere t. h a sull nullber. If fl detef'8fned fn a sf•f lar unner. ,._ fo,.

of Eqns. (1) and (4) fhow that the c~nly us.cj linear Predfcttve •llM>d

tor tfgnal proceHfng fl the trfvfal (f.e. 1 fne.r) li•it of the Nck

p~tfon algoriU. for nonline.r neural networks.

The Gabor Polynomial Predictive Metl\Od(lO) is a straightfoNArd

extension of these ideas. In thh fo 1 f Sii, each foput neuron represents

one tef'8 in a polynomial expansion of the data. For example, if the

polyno11fal ts specified t.o be second order, then there wi 11 be three first

order ten1s (already represented) and an additfonal six neurons

representing the sfx possible cross ten1s of of X
0
(t). x

1
ct - A), x2ct

-24). The weights appear as 1 f near coefficients of these cross ter11S.

Therefore, the linear least Mean Square algorittw works for the Gabor

Polyne>11fal Method with virtually no change in implementation. One

disadvantage of the polyno11fal method ts already clear. If there are d

data ite11s to be cOllbined into a general 11 th order polyn011ial (for the

above example d = 3, • = 2) then the number of tenns grows like (• + d)!

/•!d!, which explodes exponentially as either d or• gets large.

. ,.. .

c-.:.

-8-

Given Figure 2. and a familiarity with the Backpropagation Algorithm

it is natural to insert a layer of nonlinear "hidden unib" and to use back

propagation to control the weights (fig. 3}. "Hidden 1111ib" are '!!lements

that do not have a linear neural transfer function. ln~tead, the neural

transfer function is sigmoidal as sriown in figure 4. Hidden units greatly

extend the power of neural networks and can be control led with the back

propagation algorithm. In additfon to the weights, T .. , there are also the
lJ

thresholds, Ii. that shift the position of the sigmoid . Thus, if Xi are

inputs to a hidden unit, the output of the unit is not merely the

linearly

transfer

right.

weighted s.... IT.jx .• + I but the output of the sigmoidal
j 1 J i

function g(IT.jX. + Ii). The Ii shifts the sigmoid to the left or
j 1 J

Training the system involves minimizing an E function which is now

sa.ewhat 110re COllPlicated than Eqn. 3 because of the nonlinear g() func

tions. Nevertheless, a steepest descents algorithll is often used in back

propagation to einiaize E.

Back propagation uy thought of _as a particular. nonlinear, least

squares algorithm. It aay also be thought of as a generalization of the

Perceptron formalis• where the discontinuous, Heaviside step function used

for the Perceptron' s neura 1 trans fer function is smoothed into the con-

tinuous. sigmoidal transfer function. It is a natural. nonlinear.

extension of the linear nets comonly used in adaptive signal pro

cessing. Use of the chain rule in COlllputing derivatives of E provides a

useful interpretation to the •ini•ization process and allows an easy

generalization to multilayers of nonlinear hidden units·(l) For one
: . i

or more output units 'one ·niinimizes

E = I [targ~P) - O~p)J2
pi

(S)

-9-

where the targ~P) are the specified target outputs for the pth input

pattern. and Oi(p) is the actual output of the network's ith output unit

· h th . tt . r I E . g1ven t e p rnput pa ern and the present set of weight, . .
1
• • is

1.J

to be considered as a function of T. .. and I.. For the linear predictive
1 J 1

net considered earlier. expression (S) collapses to a simple form. for

this case. the sum over contains just one term i = 3. while the

target output targ~p) would be targ~p) = x3(tp + 26). and o~P) would be

o3(p) = l T .. X.(t) + I., i.e. a linear function of the inputs to unit 3.
j lJ J p 1

If a nonlinear layer of hidden neurons were inserted into Figure 2.

then o3(P) would also contain contributions from the outputs of the hidden

layer. Because the hidden layer has the nonlinear transfer function g().

the output of the hidden layer is now a nonlinear function of its inputs.

and E in Eqn. (5) bece>11es the square of a nonlinear function of the weights

because the hidden layer outputs feed into the top11e>st output layer . .

Steepest descents fs performed in the nonaal fashion by letting

(6)

Defining some intermediate quantities simplifies the partial derfva-

tives in Eqn. 6. let

net1 = ~ Tfjoj + If
J

(7)

be the net input to unit f fr<>11 the outputs. Oj, of other neurons in pre-

vious layers connected to neuron i. The output of neuron i will then be

O. = g(net.) = g(I T .. o. + I.) (8)
1 1 j lJ J 1

"'
If one introdu.ces ano~her ·~uantity "c5i defined as

6. =
1

.)

(9)

CD

er:

-•

then one obtains :

aE - - 6 0 ar.: - ij
lJ

-10-

Thus gradtent descent is i11plet1ented by aaking changes

ATfj = - c a'~j = t:6iOJ

(! ,,)

;n T . . by the
'J

c 11)

where c h a sull nullber. 6i uy be COllpUt~ by the cl'Mlin rvle. If

unit i h an output ... it then 6i bKOMs:

6 • 1 (t&rg<P> - o<P>> g-(net > c12>
i p f i i

where g-() h thl derivative of g(x) with re~t to x. If i is not an

output unit. then 6f •Y be COllputed ~ursively starting at the topeost

layer (wfch h the output l~er):

(13)

Equatfon1 11. 12. and 13 define the backp~tton steepest descents

procedure for nonlinear neural nets as out lined in Reference (1) . The

nae •back propagation• arhes frOll Eqn. 13 where an error signal is

propagated back f rot1 the output neurons to other neurons of the network.

Ill. Prediction

To illustrate the use of the nonlinear neural net foraaliHI, we

choose to predict in such a c<>11plicated ti11e series that it is "randOll" and

ergodic. The series is generated by iterating the classic logistic, or

Feigenbaum, 11ap<12>

x(t + 1) = 4bx(t)[l - x(t)] (14)

.·.21

-11-

where b is set to 1.0. This 11ap fs not known fr1 The invl!stiqat1,r. of

course . He has only a set of samples fr<>tn the t im .. ·.•·r-ies and "· requ i rPrt

to use these sa•ples to perfon. predfction. This il•·r;Jf.ed m.:tt> "'''t1uc:es -t''

ergodic, chaotic time series if b is choosen equal '-'' l. (Othfor 11-t l ~., ,,1

b lead to fixed points, li•it cycles or chaos as '111<.ueented in P"'f~,.~~"'

12.) Although the time series passes virtually every test for r•r>d~ss .

ft ts generated by Eqn. 14 and therefore aay be thought of i n an•loqy to

a pseudo random ...-.r serte1. It is videly conjKtured that t11pOf"Unt

fnstance1 of rand•n•H tn ... ture<4 • 5• 6 • 7 • S) (e.g. the onut of

turbulence) are due to the deterwtnhtic chaotic behavior produced by

sf•f lar "°"linear iterated ups.

Because the aap, Eqn. 14, h po 1yna.fa1 • it i s c 1 e.r that ~ con

ventf ona 1 Gar Mt.hod (ID) wuld also work very ~11 if one uHd a

second order polyn09fa1. We chose thh si111Ple nonli,..ar probl• to

introduce the procedure• w vf 11 be using, and to de9onstrau t.Mt non

linear neural nets can very accurately llOdel polyno9ials. in addition

to 110re general nonlinearities. Also, ~ vi 11 retum to this •U11Ple

fn Section V, where w are able to graphically de90nstrau how the

nonlinear neural net adds up sfgmofda1 nonlinearities to •roxiaau

quite arbf trary func:tfon1. A much llOre ce>11pl icated example "'' 11 be

considered shortly tn which polynomial methods are clearly inferior to

nonl fnear neural net Mt.hods.

Our _.,-al ts to use the back propagation algorithm to •djust the Tij•

Ii, enabling a predfctfon of the next point x(t + 1) in this "randOll"

series given the present potnt x(t). We chose a network architecture with

S hidden units as illustrated fn Figure S and trained the systM, using

back propagation, on 1000 sets of (x(t),x(t + 1)) pa;rs. The output unit

was a linear unit. The trained network vas then used to predict one time

step into the future for 500 addfttonal points. We always assUMe that the

"past" data needed to perfon1 the prediction, fn this c.ase x(t), is

-12-

obtained from observing the actual time series. fhus one makes a

pre-diction, observes what actually occurred, and uses the act11<1l, observed

value to make the next prediction. The normalized root mPdn square

prediction error was 1.4 x 10-4 . "Normalized" means that th•~ root mean

square deviation of the predicted values from the actual valu•"• is divided

by the standard deviation of the data. We will refer to thi!> normalized

quantity as the "index." This measure is independent of the dynamic range

of x(t). Because the series is "random" and ergodic, the only way that the

net can perform so well is if in the training procedure it learns to very

closely approximate the underlying nonlinear map, Eqn. 14, that generates

the series upon iteration. Recal 1 that the network sees only "random"

nUllbers and has no aprion knowledge that a .apping exists ' between these

nUlllbers.

In this situation, the map is si11ple (polyn011ial) and prediction is

not done very far into the future. In Section V, we explicitly show how

the neural net approxh1ated the map of Eqn. 14 using data frOll the time

series. This simple quadratic map could also have been exactly recovered

from the time series by using d linear network and including Multipliers at

the tap lines to for11 polynoaials in the data. The E function to be •in

imized would still be quadratic in the weights although the data ten1s

would now be a general polynomial including powers beyond quadratic. This

;s the method of Gabor, Weiner, Volterra(lO)_ Although prediction can be

improved over that achieved by the normal linear Predictive ·Method, (for

this simple example, the polynomial map could be recovered exactly) in
•• 1 .) .

general this .. multipMcat,iive meth'?d will be inferior in predictive ability

to that provided by nonlinear·: neural nets (in the following more co111p-.,

licated example it is worse by orders of magnitude). Furthermo,~e, the multi

plicative method suffers from an explosion in the number of weights as the

numh~r of t~o d~lav~ and th@ order of the oolvnomial is increased.

-13-

We should also point out that we chose one input neuron in the n~twork

architecture, Figure 5, solely for illustrative purposes. Adllinq more

input neurons (i.e. choosing additional delayed values from the timP ~eries

for input) actually increases the predictive accuracy, at lea:,t for the

case of 3 i_nput neurons that we test.ed.

A second, much more complicated test of predictive ahi lily, was

suggested to us by 0. Farmer and J. Sidorovitch. 13 In this example the

time series is generated by a delay differential equation

dx(t) = ax(t - t)

dt l + xlO(t - t)
- bx(t) (15)

that was first investigated by Mackey and Glass. (l4) Keeping the parameters

a and b fixed at a = .Z and b = .1 leaves t as the only adjustable param

eter. As t is varied the syste11 exhibits ffxedpoint, limit cycle, or

chaotk behavior. Choosing t = 17 yields chaotic behavior, and a strange

attractor,(lS) with fractal di111ension approxi.ately 2.1. t = 30 yields a

strange attractor with the fractal · dimension approximately 3. 5. Higher

values of t yield higher diniensional chaos. Note that because of the

delay, x(t - t), the phase space of this system is infinite dimensional.

However, as time progresses the system collapses onto the low dimensional

strange attractor. Other infinite dimensional chaotic systems, such as

nonlinear partial differential equations, also display collapse onto low

dimensional attractors. Thus, the Mackey-Glass equation (15) exhibits in

the simpler setting of nonlinear, differential equations behavior that
. .

occurs in: much more icomplicated systems such as nonlinear partial dif-
,

ferential equations . A detailed analysis of the chaotic properties of

equation (15) may be found ·ln Reference (16). At T = 17, x(t) appears to

be quasiperio~Jc and the power spectrum is broadband with numerous spikes

-14-

due to the quasiperiodicity. At T = 30 X(t} is 1•vf'n more irregular.

Figure 6 shows a plot of x(t) vs t for a time span of !JOO time ~teps for

both T = 17 and t = 30. A constant function was 11'.•l'd as the initial

values, and transients were allowed to die out before ttw plot was started.

Packard et al. ,< 17> have demon~trated that an altr~ctor may be recon-

structed from a time series by using a set of time dl• l.tyed samples of the

series. If ~ is a time delay, and m is an integer, then one may write for

points on the attractor

x(t + P) = f(x(t), x(t - ~). x(t - U) . . . x(t - IM)) (16)

where P is a prediction time into the future and f() is a map. This may

be viewed as an 111 + 1 dimensional surface. Thus, the "embedding dimension"

dE, is defined to be • + 1. Taken~18 has proved that a least upper bound

exists for which f() wil 1 be a SllOOth aap. If the di11ens ion of the

attractor is defined to be. dA, then one needs an embedding dimension less

than or equal to 2dA + 1, i.e.:(lS)

(17)

A 111ini11al require.ent is that dE ~ dA. It is perhaps surprising that

a smooth functional fol"lt, such as Eqn. 16, relates values in a time series

generated by complicated nonlinear differential equations such as Eqn. 15.

That such 111appfngs exist is a consequence of Takens theorem, (lS) however

the theore• provides no fnfonnation on the fona that f() may take. We

will show below that the neural net uses data from the time series to
.)

provide an explieit, ·'inalytic~·1. expression that globally approxi111ates f()

to a sufficient degree to be'' able to perform pred~ction using equation (16}

with an accuracy that exceeds the conventiondl Linear Predictive method

and the Gabor, ~ weiner, Volterra method by orders of magnitude .

-15-

We wi 11 now test the predictive accuracy of the nonlinear neural

net and compare it to the conventional methods of I inear Prediction< 2>.< 3 >

and Gabor Polynomial Pre<Jiction{lO). The test wi 11 be performed twice,

once using a time series generated by the Mackey-Gldss equation (l~) at

T = 17 (fractal dimension = 2.1), an~ once using th~ Mackey-Glass equation

at t = 30 (fractal di111ension = 3.5) . first consider the l = 17 time

series shown in Fig. 6a. Using Eqn. (17) we select an embedding dimension,

d[. equal to 4. This specifies m in Eqn. (16) to be m = 3. It now

remains to chose A and P. To facilitate later comparison to an alternative

predictive method of Farmer et al. (13), we choose A = 6. These choices

of m and A imply that a prediction aade P t ilM! steps into the future

past the last observed point x(t) will be made using observed data at

ti•es: x(t), x(t - 6), x(t -12), and x(t -18). There are therefore four

inputs to the nonlinear neural nets, representing these values of x(t), and

one linear output ele11ent representing the value x(t + P). We chose 20

hidden units arranged in a two layer architecture. Therefore, the

architecture of the network appears ·as Fig. 7. Each neuron in Fig. 7

is connected to all the neurons in the directly previous layer. This

architecture was choosen rather arbitrarily and seemed to yield quite

acceptable perforunce. Other architectures gave comparable perfon11ance.

We now need to choose the prediction time P. It is desirable to

test the predictive accuracy as a function of how far the prediction is

111ade into the future, so we will choose several values of P. For any

given P there are two ways that a prediction P time steps into the future

past the last observed ~ data point may be made. The first way is to train . ,.
a separate network for each ~hoice of P. For example, if P = 6 then one

.,
may train a network using a set of samples: xU.), x(t. - 6), x(t. - 12),

1 1 1

x(ti - 18) on the four inputs, and x(ti + 6) on the s ingle output. This
.• . 0 0

nAtwnrk_ after trafnfng, will then map any future set of x (t .), x (t. - 6) ,
. 1 1

..

-16-

0 . 0 x (t . - 12). x (t. - 18) (where superscript "011 indicates oh!Jt•rved values)
1 1

i nto the set x(ti + 6) . In this method, one assumes that. lht> data needed

to predict at. say, t = 1,000 is the observed values of tht• time series at

0 0 0 0 . x (994). x (988). x (982). x (976). Hw n~twork might havt· heen trained.

for example, on data taken from t < o: A prediction at any arbitrary time,

t, in the future is made using the last four observed data po i nts . Thus ,

no matter how far ahead one is predicting in the time series (e.g. t =
1,000), the prediction is never more than P time steps (in this case P = 6)

past the last observed data point. If. in the example above, one wished to

predict 12 time steps into the future past the last observed point. then a

second network would be trained using x(ti + 12) on the output neuron.

This second network would always predict a value 12 time steps past the

last observed point .

To see how predictive accuracy degrades with increasing P we trained 8

separate networks to inake predictions at P = 6, 12, 24, 36, 48, 60, 72, 84,

and 100 time steps past the last observed point. We COllputed the nonaal-

ized root 111ean square , index of accuracy (index = (root mean square

predictive accuracy)/(standard deviation of the data)) for 500 predictions

and plotted the results, for t = 17 data, in Fig. Ba. We did this for the

nonlinear neural net, the linear Predictive method. and the Gabor

Polynomial inethod. The polyn011ial order was choos~n to be equa; to 6,

yielding roughly the same number of polynomial coefficients as weights in

the nonlinear neural net. This was also done for the second (T = 30) tilM!

series and these results are plotted in Fig. 8b. The embedding di~ension
·.

30) · .;,as choosen in this case (T = to be 6. The linear Predictive method
'

needed 2,000 data points in -training to achieve any reasonable accuracy,

while the Gabor method and the nonl i near neural net method seemed to do

-

·~ .

-17-

well with 500 data points. It •ay be seen frOfll figure'> 8a. an<:! ~t; tttat

the nonlinear neural net. using t.he predict i ve 111Pth<Jd just desr:r it .. <:I ,

perfonns best. There h. h01itever. a second way in which or.,. (..J n 111~r•·

predictions at various P values, in which the n~ural net f>"!'for•<, ,.., ,

better than the method just descri~d. and to which the ~lter~ti~~.

conventional methods can offer little c09petition .

The second way to make predictions at various choices of P is to p l~ce

previously predicted values on the input lines to bootstrap oM ' s way to

higher P values. That h, one iterates the upping provic»d by t'- non

linear neural net. for eQ11ple, after training a network to prHtct at P =

6, one can feed the predicted values back into the inputs to prHtct at P =

12. 18. 24. • • • etc. Thus, instead of tratntng separate networks to

pNClfct at P • 12, 18, 24, ••• etc. (as descrit>.ct above) one c~ simple

iterate the upping provided by the P • 6 Mt.work . There are tr.-Ofh

i11plicit in this iterative approach. Because previously predicted valuu

(ude with some error) are used to uke l~HqUenl predict ton. t,_ errors

get magnified upon tteration. Iterating a P = 6 net once. to fora a P = 12

net wi 11 not ugni fy the errors very llUCh. tbilever. un 1 eH the P = 6 aaii

was an extnwly good approxtution to the actual P = 6 up implied by

Tatuns theorem, further iteration of the P = 6 up wi 11 soon get to ~ a

dar·.qerous procedure. It 1s intuitfvely clear that a P = 6 aap is less

irregular than say a P = 36 up (think of how the aap cha~s upon

iteration for the c 1ass1c 1ogist1c aap) and so it seet1s reasonab 1 e to

believe that one does have a possibility of fon1ing an extre11ely good

approxi.at1on to the P = 6 up, and avoiding the danger just described .

Ultiutely, one will magnify the errors to an unacceptable degree. but this

.ay not happen unt i 1 the effective P 1s quite 1 arge, i. e. for a large

nUlllber of iterations. T~ test this conjecture, we iterated the P = 6 llaP

for both the nonlinear neural net and the Gabor polyne>11ial 111ethod, and

co 11 ected resu 1 ts on the index of accuracy in ths sa.e way u

.~

-18-

before. These are the final two curves plotted i n f iq . ~-t (r = ll1 ~ncl

Fig. Sb (t = 30). It is jnwnediately obvious that f() r th'! nr;rd j,,,....,, r.~ur 't l

net the danger just described was overcome, and th.it th i ·, prrx: '!'d t.Jrf! • ~ ~

far better procedure for .aking predictions at large P. It is -t l ~ o "'!'.td 1 11

apparent that the Polyn<>11fat method is wjldty nuatericaJly unst,.b l ~ ur>der

this procedure (due to the errors getting grossly ugnHied by th'!' tdqn

order polyno11fal te,..s). figures 8a and 8b clearly show tr.at tr~

iterative, nonlinear neural net procedure is orders of uqn1t~ 90re

accurate tMn conventional procedures for large predict ion t i•s. P. Our

choice of iterating the P s:: 6 up was an infof"lled guess. ft .. Y .,.11 ~

that another choice of P would yei ld even better results. although .e hawe

not fnvestfgated this. further tncreased tn accuracy uy be obtained by

i ncreas fog the number of hidden uni ts f n cOllbt nat ton wt th t ncreu i "9 UW

nUllber of training patterns.

A new predictive algorithm has recently been publ hr.H by hrwr and

Sfdorovitch. (ll) The IUlber, and values of UW delays for the nonl tnHr

neural net •thod for the Mackey-Glau equation were choosen to ac,ree 1111th

those uHd by fa,...r et al. fn testing thetr very recent and ~rful loc•l

linear PrecUctfve Method(ll) (not to be confused with the conventtonal

linear Predictive Method described earlier) . The accuracy of the Loul

linear Mthod and the nonlinear neural net method (perhaps best described

as a global, nonlinear method, see Section Y) are roughly c011PArable for

this prob1 ... <19> Increases tn accuracy in one method over the other can

be achfeved by twiddling the respective algorithlls, however the aain

conclusfon is that both methods are orders of aagnitude 11e>re accurate than

conventfonal methods (including the global polynomial 11ethod of G•bor et

al . (lO) and the Linear Predictive Method,(l),(3> and indications are that

both 11ethods aay be used to achieve the funda111ental li•its on predictive

accuracy dictated by the nature of chaos.

It se .. s that the nonlinear neural net 11ethod will be very useful for

I -

-19-

perfor11ing prediction in real ti11e, and for other real tinw •, i q11n l c. rrr

cessing applications, such as adaptive control and system m<J'1~ 1 l rn~ . l td'.'.

(/fJ)
is due to the natural upping of neural nets or.to para l IE.- 1 ti-trrtw.tr•·.

\ltilh the resultant possibilities of training t1111M!s on the ord,. r ,,f rr. ·ur,·

seconds . Prediction ti1tes (the ti11e taken to saake one pred ic t ion -tft.- ..

being trained on the data) are already quite short, due tot~ si 11p litity

of feedforward networks, however these ti1tes could, of cours•. .t ,,, t*.

reduced to 111croseconds, or so, tf done in hardware . furthf?,..,re . t~

nonlinear neural net Mt.hod s.-s to be achieving roughly c~r.c>le

accuracy to the local linear Method of fa,..,. et al . {ll), 0 9 > usinq

only 500 points from the tf• series, whereas the Local l tne.r ,..tnod

uses 10,000 - 20,000 potnts. Panimony in the requir-nts for dau

potnts from a tfM sertes h a considermle actvan~. u • large

numer of data potnts uy be collected only through ustng very short

se11plfng tf•es, or else collecttng dau over a long ti•. In uny

applfcattons the UH of short 5a11Pltng ti•s. or long data collection

ti•s, ts either undesirable (short ti• samples a" 11e>re corr-et lat.a,

hence yteldtng less tnformatton) or infeasible (U.. data over a long t1me

uy be unavailable). To be fatr, the nonlinear neural net •U~ requires

a longer run ti• for training in COlllPUter si9U1ation (30 - 60 einutes on a

Cray X-MP, CCJllPared to a fw ei nutes on an X-MP, for the Mackey-G 1 ass

P = 72 exuple using the Local linear Method) . Hawver, the neural net

•thod also yields 110re tnforwatfon than the Local Linear ~thod as a

result of training (see Section V) so it ;s not yet clear which method is

faster (when si11ulated) in producing the saine a11<>unt of infor'9c1tion

IV. Nonlinear System Modelling

A second subject of considerable interest in signal processing is the

system 110delling proble•. Here one wishes to construct a llOde l for the

transfer function of an unknown "plant" using only a finite data set of

fnputs, and ass~c!ated outputs. of the plant. Applications include Adap-

c·c
. .

1

-20-

live control among other topics. We choose a relatively .. imple nonlineu

transfer function. x ~ x2 , which is depicted in Figur~ !he reason for·

choosing this example as an illustration of the method 1 · . tllat there i ., ,1

nice graphical way to depict both the actual transfer t1111ction and the

. (1\))
modelled tr·.-' :sfer function. A polynomial Gabor, Weiner, Volt••f"l'a method

would also work quite well for this simple example. We cllw.<' it to simply

illustrate how a nonlinear neural net works, and not lo demonstrate the

relative effectiveness of the neural net method. This was already done in

the previous section .

A neural network with 2 input units, two layers of hidden units and

one output unit were trained on an I/O data set generated by passing a

relatively broadband input function through the block box of Fiqure 1. The

network is shown in Figure 9. The input was a sum over twenty frequencies

with random phases in the range (0,1].

x(t) = ~
20
I sin(20ft + ~£)

f = 1
(18)

that was sampled at times separated by .001 between t = 0 and t = l. The

factor N is a normalizer that nonnalized the resultant output (x2) to a

maximum value of 1.0. The normalization was performed soley for computa-

tional convenience . Inputs and outputs h~ ·' '."q arbitrary dynamic range are

easily handled by a scaling agreeaient, as described in Appendix I.

Training was accomplished by taking data points from Eqn. 18 over a ti111e

interval (0,1] and setting the inputs to be x(t) and x(t - .001), with the

·2 output set. to be x . Backpropagation was used to adjust the weights.

Afte~ training · is complete, one should be able to input a new

waveform, x(t), and have x2.{t) emitted by the output unit of the neural

network. We selected another wave form, similar to Eqn . 18 , except with a

different choic~ of random phases. The normalized rootmean square accuracy

for the test w<iveform was . 0476.

-
.

co

a:

-21-

This example was choosen because it is p11•,c;ible to graphically

demonstrate that the neura 1 net actua 1 ly I ea rnf'il I.he a Igor i thm, x(t) ·
.,

;~(t), from a finite data set of input/output pair~ ~irst of al I, we plot

the actual algorithm, x .. x2 , by graphing x2 , vs (,.(t). x(t - .001)). A

finite difference approximation to x2 is

x2(t) = [x(t) - x(t - .001)]2 /(.001)2 (19)

which of course yields a parabolic trough if z = x~(t) is plotted vs x(t)

on the x axis. and x(t - .001) on they axis. Note .that we are not using

values for x(t) and x(t - .001) taken from a particular wave form to

produce the plot. Instead. x(t -.001) is conc:idered to be an independent

variable frOll x(t). and we plot the functional dependence of x2(t) on the

two independent variables. Thus we i11c1gine x(t) to be an x axis variable.

x(t - . 001) to be a y axis variable. and plot the graph Z =
(x - y)2/(.001)2. The resultant graph (Z = (x - y) 2 /(.001)2 is shown in

Figure 10. We have rotated the axes so that we are looking straight down

the trough .

Next. we consider the algorithlll that was learned by the neural

network. After trafnfng, the output neuron value (x2 (t)) is a well defined

function of the values of the input neurons x(t). x(t - .001). The

function is a complicated SUI! involving tanh()'s (due to the sigmoidal

transfer function of the hidden units), and certain coefficients, which are

the actual values of Tfj and Ii that were determined by the training

algorithm. This function is easily plotted in an analogous Manner to the

previous figure and · is ·s)hown in · Figure 11. Here again. x(t) and x(t -.)

. 001) are taken to be independent variables (i.e . not from a particular

time series), and the value of the output neuron is plotted vs the values

of the two input neurons in the same rotated coordinate system. Note that
~

~ n.:ir;iholic trouQh does appear in Figure 11. although as one proceeds away

-22-

from the bottom of the trough the sides stop rising and flatten out. lhis

flat region is irrelevant. The region of interest ;., the bottom of the

trough, because it is only in this region that x(t.) ::: x(t - .001),

indicating a sufficiently small sampling time to be .ilile to approximate

x2 (t) by the finite difference approx!mation . We depicted the "flattened

region"as well solely for illustrative purposes. In Fiqure 12. we plot a

"blow up" of the relevant region, x : y, over a range of x between -.1 and

+ . l and similarly for y. It is therefore graphically clear that the

network did learn the algorithm x .. ; 2 (t) because the region x : y, cor

corresponding to x(t) : x(t - .001) (which is always satisfied for

continuous wave forms assuming .001 is a sufficiently small sampling

interval) is indeed a parabolic trough. Furthennore, we numerically verify

the accuracy of the network's algorithlll by calculating the normalized root

11ean square error of ._ the network in cQ11Parison to the output of the finite

difference approxi111tion for x2 for 10,000 data points evenly spaced over a

square of x&(·.05, .05]; y&(-.05, .05]. The resultant value was .0403,

which is a value of the Match of the algorithms. Adding more input units

(further delays) actually increases the accuracy, although of course we

can't plot the output in 3 dimension.

We also note that the parabolic trough is not generated by some sort

of Taylor's series for s~all input values. The sigmoidal transfer function

used in constructing Figure 12 has only odd terms in its Taylor expansion

and therefore Figure 12 was generated by adding together ful 1 sigmoidal

functions with appropriate coefficients (Tij) that are sufficient to

closely appr~x.imate .. a pafabolic trough in the region of int.erest. Exactly
.)

how a neural net may add together sigmoids to approximate essentially
•;

arbitrary functions is described more fully in Sc:tion V. This ability to

approximate functions, polynomial or otherwise, is the reason for the

success of nonlinear neural nE1tworks. A strictly linear network., trained

-

-23-

with the usual Least Mean Square Rule of adaptive signal processing, would

only be able to produce planes (or hyperplanes, if one used mon~ than two

delays on the input lines) if graphed in a similar manner to fiqure 12. A

second order Gabor Polynomial method would, of course, do very well on this

problem, but as seen in the previous section, it offers no competit i on in

more complicated examples. Finally, we point out that the graphs in

Figures 11 and 12, are a clear example of "generalization" by neural

networks . After training on a finite data set the neural net was able to

deduce the correct algorithm (compare the troughs of Figures JO . and 12)

such that when new data is presented a correct output is given . We see

that the somewhat mysterious ability of neural networks to "infer

a 1 gorithms11 and to perform "genera 1 i zat ion" is nothing 11ore than rea 1

valued function interpolation, at least in the context of signal

processing.

IV. Mode Oeco-eosition by Nonlinear Neural Netw~r~s

It is natural to ask "why does a neural net do so well at nonlinear

signal processing?" We answer this question by analyzing the sh1plest

prediction exuple, the logistic map and then re1aark on the syste11

11e>delling problem. First, note that at the end of the training period, all

the synaptic weights, Tij' and thresholds, Ii. are specHied nUMbers.

Therefore the output neuron, which represents x(t + 1), is a specified

function of the input neurons x(t). In particular, if we take the weights

which led to the root aiean square predictive accuracy (1.4 x 10-4) quoted

in Section III, then one obtains frOlll these weights, and Figure (5), the

formula .)

.)

x(t + 1) = - 0.64g{- 1.11 x - .26) - l . 3g{2.22 x - 1.71)

- 2.285g{3 . 91 x~+ 4. 82) - 3.905g(2.46 x - 3.05)

+ 5.99g{l. 68 x + .60)

+ ·{.31 x - 2.04)

where g(x) = ~ (l ~+ tanh x).

(20)

I

-
CD

. Cl.'!

-24-

We may write this as

x(t + 1) = T(x(t)) <ll)

and compare this iaap to the actua I •ap that produCP'l the tilllt' r;Pr 1.-._

x(t + 1) = f(x(t)) = 4x(t)[l - x(t)]

A plot of Eqn. 22. Le. plotting x(t • 1) vs •(t) yields (of c.ours,.J .;i

parabolic curve.

A plot of Eqn. (20), again plotting x(t • 1) vs •(t). yields•

virtually identical curve over the range 0 • 1. Therefore Eqn. (lO) is a

very good -s>Proxta.tton to the global up generating the ti• HriH. Ttw

reason thh can occur aay be Hen by constderinQ the Sl9 of j~t two

11gmo1d1 vith par .. ten a.b occurring tn a si•i Jar fashion to the T ij and

It' in Eqn. (20)

(23)

Par-ten b adju1t the slope of the sigimotcts. c adjust the shffts • .-ttile •

adju1t1 the aiplttudH. If. for example. a1 h positive. ~ile a2 is

negative. and ff c1 # c2 then a •bump• will be forwed ~ the siQlllOids are

added toget.ltl"~ as tn Eqn. (20, 23). The function. Eqn. (ZZ). or virtually

any other c<l) functton. uy be approxfuted very well by appropriately

for'9ing and adding up •bUlllPS. • This h s09eWhat analogous to the •thod of

spltnes(Zl) for a.pproxiuting arbitrary functions . Splines are constructed

in 1uch a way to uxi•he smoothness. The smooth form of the tanh acts in

an analogous fashion. Splines ~re. however. difficult to -.iork with in many

d1 .. nsions . A si•ilar effect occurs in the Mackey-Glass example of Section

II, however the four dimensional elllbedding dimension precludes plc:ting fn

three dfnM:nsions .

The way the sig11<>ids add to approxhlate a parabola for the logistic

map 11ay be seen in Fig. 13. Figure 13 should be read from left top down to

botto. right. In each vindow, a term from Eqn. (20) is plotted as a dotted

. ~

-25-

line and the sum of the terms appearing in previous window ~re plotted as a

solid line. Thus, window (l) initially shows term (1) .t ~. ·•solid line and

term (2), to be added in, as a dotted line. Window (2) t.li•·11 shows term {l)

+term (2) as a solid line and term (3), to be added i11 •• 1·. a dotted line.

and so on . The final window shows the complete plot nl the sum of all

terms in equation 20. [ach tick mark is one unit. ~" Uw final bump

appearing between O and 1 in window (6) is the approximdl inn to equation

22, which is a parabola with domain of 0 .. 1 and range of 0 • l. We

continued the plots in all windows outside the valid range of 0 .. 1 just to

show more of each sigmoid that is added in. This range is actually

irrelevant as far as using the network for prediction is concerned, and was

shown for illustrative purposes only.

Adding together sig11<>ids to approxi11ate a particular function is

re•iniscent of Walsh analysis. Walsh functfons(ZZ) are a complete set of

functions, ranging from 0 to 1, that are 11c1de up out of step functions. A

COllllOn technique of signal processing is 110de decomposition of a function

into sums of Walsh functions. A sigmoid may be viewed as a smoothed step

function, and therefore approximating a function with sums of sigmoids

seems somewhat similar to a mode decomposition of the function in ten11s of

a Walsh function basis set.

This notion that the neural net performs a type of mode decomposition

to approximate a function may be made clearer if one considers transfer

functions of the nonlinear neurons involving trigonometric ~in's instead of

sigmoids. <23> This is, if we replace g(x) by

. j

1 . .
g(x) = ~ (1 + sin(p,)), P~= · a constant (24)

then g(x) is sti~l an element of [O,l]. and the back propagation algorithm

will still work irrespective of the form chosen for the transfer function.

-26-

(The range condition on g(x) g(x) ~ (O,l] is not Important, we chose it

for convenience.)

If we now consider Eqn. 23, which is a generi1 form for output in

terms of input for feed forward nets, then we see U1.1l the ai 's act like

Fourier amplitudes, the bi's like frequencies, and 1he ci's like phases.

Recall that the ai's are the synaptic weights of t.he hidden to output

layer, the bi's are synaptic weights of the input to the hidden layer, and

that the number of g functions (i.e. sin's) that occur in the sum is the

number of hidden units in the hidden layer. Thus, training the neural net

is, in essence, contructing a discrete Fourier series . However, in con-

trast to a normal Fourier deco11position in which the values of the fre-

quencies are fixed, the net has the ability to adjust the values of the

frequencies to obtain the minimum least mean square error. The number of

adjustable frequencies is determined by the nUlllber of neurons in the hidden

layer. It is, therefore, clear that spedfying the nlmber of hidden units

specifies the number of frequencies available to the net, and that the net

then adj•Jsts the numerical value of these frequencies, and their amp

litudes, and phases, to produce a best fit. Presumably, adding more hidden

units, i.e. adding 111ore adjustable frequencies, will improve accuracy.

Because in conventional Fourier Mode Analysis only the amp 1 i tudes a re

adjusted, and the frequencies are fixed, we 1abe1 the mode decomposition

perfonied by the neural net "Generalized Fourier Oeco•position," where

''generalized" refers to the ability to adjust frequencies. Further

generalizations are possible by considering multilayer networks and

different expressions for the transfer function . We point out that

using sin's often 1°eads i to numerical problems' and nonglobal minima,

whereas sigmoids seemed to avoid such problems throughout all our

extensive simulations.

It is worth ~mphasizing that ; the network h not a~proximating by a

Mode decompositfon·· the. time series that was used in training. For chaotic
~~~:-.. ~- --.. 



-21-

time series, there is a huge spread of frequencies anct we have typically 

given the neural net a relative few number of hidden units. Instead, the 

neural net i!. dpproximating the underlying map that qenerates the time 

series. 

In the logistic example the neural net, of course, approximated the 

parabolic map that was used to gene.rate the time series . In the Hackey

Glass equation a nonlinear differential equation generated the time series . 

However, it is known on general grounds that a deterministic, nonlinear map 

underlays the time series, (see Section III) although the form of the map 

is not known. It is this map that was approximated by the neural net 

using data from the time series. The ability of neural nets to provide 

explicit formulae that are excellent approximations to the unknown maps 

implicit in chaotic ti11e series 11c1y be of interest in the analysis of chaos 

and other nonlinear behavior. Finally, we note that the parabolic trough 

plots in Section IV are an exc1"J)le in two dimensions of this type of 

analysis. 

VI. Summary 

We have shown that the back propagation algorithm for nonlinear neural 

nets is a natura 1 genera 1 i zat ion of the widely used LHS ru 1 e or Li near 

Predictive Method for signal processing. Use of back propagation in the 

context of signal processing allows solution of nonlinear system modelling 

problems as well as excellent prediction on complicated, "random," time 

series. Predictive perfonnance greatly exceeds al 1 known (to us) conven

tional methods of prediction including linear Prediction(l),(J)' Global 

Polynomial(lO) methods and is competitive with the new Local Linear 

Method. (lJ) ' In additfo~. the network provid~s an explicit, global, approx-
. ) 

imation to the underlyi11g nonlf.near .iap with m1nimal requirements for data 

points from the time series . .,Specific applications have not been discussed, 

however it see11s that there are. aany. One may expect that other areas of 

signal processing, in addition to prediction and system modelling, 111ay 



·~ 

M 

-28-

be fruitfully investigated with this method. The advent of neural net 

~ardware <20> will make certain real time applications µossible . 

Among the issues not addressed in this paper are : 

(1) the effect of nonglobal minima (not a problem in our si mu iations) 

(2) the effect of noisy data; an~ 

(3) procedures to update predictions "on the fly" a la Kalman

Bucy . <24 > 

Acknowledgements 

The authors would like to express their gratitute to Doyne Farmer and 

Sid Sidorovitch for so generously sharing their prepublication results and 

insights on their alternative •ethod (Local Linear Method) for perfonning 

predict ion(lJ) • 0 9>. The Glass-Macky example was suggested by them and 

they provided the data generator. The authors would also like to 

acknowledge extrettely useful conversations wtth Y.C. Lee involving the 

theoretical underpinnings of this work. The generalized mode analysis 

discussed in Section V was developed in conversation with Y.C . Lee. and he 

made the initial suggestion that such an interpretation may be possible. 

Finally, the authors would like to thank Carolyn Algire for expert typing 

of a difficult manuscript under deadline pressure. 

Appendix I: Scaling and Oyna11ic Range 

We have found that the certain nU11erical problems could be avoided by 

having inputs and outputs in the range of 0 • l during training . We will 

give a simple scaling procedure that scales the weights that come from 

training on variables 0 • l, to those appropriate to handle inputs and 
. . 

output variabl.es of arbitr~ry dyna111ic range. Note that the numbers for the 
. ) 

normalized root mean square index of accuracy that we quote in the text are 

independent of dynamic range. Suppose that the real world Inputs x1". and 

Outputs, Xout have an extended dynamic range i.e. greater than 0 - l. We 



-29-

can always write them in 11ut in terms of variables x and x that range 

between o and l : 

(Al) 

where u, fl, )', o are appropriate constants that adjust tht> r·ilnge : 0 - l of 

in out t th . xin xin . out xout h x , x o e range: mtn .. max and mtn X · max ; w ere 

min and max refer to the minimum and maximum values of Xin .rnd Xout in the 

train ~ ng set. One then trains the nonlinear neural net usi ng the variables 
in out . x and x w1th range 0 • 1. This results in a set uf weights and thres-

holds, Tij and Ii, geared to the range 0 • 1. 

We no~ wish to scale Tij and 11 to enable the network to handle the 

real world dyr.c111ic range of the variables xi", Xout. We will describe the 

scaling procedure for a network with a single hidden layer and Input .. 

Hidden .. Output connectivity. Si•ilar arg~nts work for any network 

connectivity. 

First. consider the connections between the Input and Hidden layer. If 
in xj represents the inputs in a range 0 • l, then the Hidden layer produces 

an output involving the nonlinear transfer function g( ) 

(A2) 

If one now used the original, real world, values x .out for the Input layer 
J 

then the hidden layer would, of course, output a different number. We wish 

to scale ri j and .,Ii tp Tij sc~led and Ii scaled so that the hidden layer 

·. · in · ; scaled scaled . when using X. and T. j ; I . , wt 11 output the same number as J 1 ., 1 

number as from expression {A2) . It will then be tr ivia l to scale the 

Hidden .. Out put connections to get the ,outputs in the desired dynami c range . 



M 

c: 

-30-

Thus we require : 

g(lT . . x~" +I.)= g(lT~~aled x~" + 1 ~caled} 
j 1J J 1 j 1J J 1 

Equations (Al} and (Al) then yield (for Input~ Hidden conn~Ltions} 

T~~aled = T •. /n 
1J 1J 

I~caled =I; - (~/a)lT .. 
j 1 J 

Since the Output layer sees 

H . . g( ) + I . 
j lJ 1 

(Al) 

( A4) 

(AS) 

where j ranges over the Hidden indices, and since g( ) is outputting 

the same value for the scaled inputs as for the unscaled inputs, we 

see from the Eqns. (Al and AS) that we merely need to define 

Tscaled _ T 
ij . - y ij 

I~caled = yI. + 6 
1 1 

(A6) 

for the Hidden + Output connections to achieve the desired dynamic range 

for the outputs. 

Similar scaHng arguments work for arbitrary connectivity. It the 

traning data set is not typical of the range of values to be used for later 

prediction. then a possibility for error exists. However, one must always 

assume the training set is a typical data set, or else the whole concept of 

training fails . We also reiterate that the normalized root mean square 

index of accuracy used throughout this is insensitive to the scale of the 

data. 

Appendix II: ' A Note 'on Sjmulations 

In contrast to simulation~, of problems involving symbolic data, where 

an accuracy of . 1 is .commonly used to generate answers where outputs are 

identified as O or l's,(l),(9) the real number problems considered in this 

oaoer reouire Mgh accuracy. For this reas~on, we typically ran our simula-



-
M 

-

. .,.. 
4 

-31-

lions on a Cray X-MP to speed-up convergence to "'' ,.,ac t mi rd 111U111 In 

add iti on, we found that use of a conjugate gr ad if•nt. "' l111 1111 i1in9 prr1'."''Jur,. . 

instead of the commonly used steepest descents pr'J("'' ''' ,, . produc."'<l ,,, ,,.,,. ., 

of magnitude speedups in convergence . Al I si mula tir111 ·. werP. run • •ll'l "' 

general purpose •athetaattcal st•ulation package that ·~ in de~eloptN!nt by 

R. Farber at Los Ala.as. The package includes a q .. r..-,.il pufl'Ose, -nu 

driven, interactive frontend llOdule (written in C) , wtd c t1 accf!Ph ~tlllll'"Jr~ 

tional llOdule that can be written tn eit.Mr C or Fortr•n, which C•n U..n ~ 

run on any nullber of uchinn. including parallel 11aehlnes . An autoaat t c 

code generation llOdule was aho devel~ and used to produce opti .. lly 

vectorizing C,..y Fortran code. Results •re •ut,..tical ly col IKad at • 

host uchine. fo,...tted. saved to dhk with unique run r..- file labeh. 

and • fo,...tted hardcopy ts also produced for aldfnCJ doc-.nt..ation of the 

runs. The package h 1tfll in an experf•nt..al st.at. and is p,..Hntly 

tailored to the pecultaritfes of the lo1 Al.as comput.r network . Run ti•s 

were on the order of •inute1 for the loghtfc aap p.-.dictfon and approxt

utely an hour for the longer term predictions in the Gl•ss-MKky e~tion. 

These run i.1•1 were needed to obtain exceedingly accurate approxiutions 

to the •tntu of the back propagatton energy function . Acceptable accuracy 

uy be achieved with significantly shorter run ti11es, however we decided to 

see just how close to the exact •ini11Um one could ca. given virtually 

unlt•ited run time. It is inherent in the operation of the neural net that 

it produces an excel lent global approxiut ion to the up~ underlying the 

tf11e series . If such a gl~l 11ap were produced by patching together a 

large number of local linear approximations obtained frOll the method of 

Far11er and Sidorovftch then presumably run times of si•ilar length would be 

encountered. The advent of parallel. neural net hardware (chips) should 

allow the nonlinear neural net Mthod to run in real time for n1.19erous 

signal processing applfcatfons. 

• ' ~1. • 

-~ ' 
I 



-
M 

-32-

References 

(1) 0. Rummelhart, J. McClelland in "Parallel Distributed Processing," 
Vol. 1, M.l.T. Press, Cambridge, ~A (1986) . 

(2) 8 . Widrow, S. Stearns, "Adaptive Signal Processing," Prentice Hall 
Inc ., Englewood Cliffs, NJ (1985). · 

(3) 8 . Widrow, M. Hoff, "Adaptive Switching Circuits," l'J60 WESCON 
Convention Record part IV, p96 (1960). 

(4) 0. Ruelle, f. Takens, Comm. Math . Phys . 20 pl67 (1971) . 

(5) H. Swinney el al., Physics Today 31 (8), p41 (1978) . 

(6) K. Tomita et al., J . Stat. Phys. 21, p65 (1979). 

(7) H. Haken, Phys. Lett. A53, p77 (1975). 

(8) 0. Russell et al., Phys. Rev. Lett. 45, pll75 (1980). 

(9) T. Sejnowski et al., "net Talk: A Parallel Network that Learns 
to Read Aloud_," Johns Hopkins Univ. preprint (1986). 

(10) 0. Gabor et al., Proc. Inst. Electr. Eng. 1088 (July 1960), see also 
"The Volterra and Weiner Theories of NonlinearSystetns," M. Schetzen, 
John Wiley, and Sons (1970). 

(11) J. Makhoul, Proc. IEEE 63 No. 4, p561 (197 5). 

(12) M. FeigenbaUll, J. Stat. Phys. 19, p25 (1978). 

(13) 0. Far1ter, J. Sidorvitch (private communic~tion), see also their 
preprint "Predicting Chaotic Time Series," (Los Alamos National 
Laboratory, 5/87) 

(14) M. Mack~y. L. Glass, Science 197, p287 (1977). 

(15) for more on strange attractors, see: E. Ott, Rev. Mod Phys . 53, 
No. 4, p655 (1981). 

(16) 0. Farmer, Physica 40, No. 3, p366 (1982). 

(17) N. Packar~ _et al." Phy~ . Rev. L_ett. 45, No . 9, p712 (1980) . 
. ) 

(18) F. Takens, "Detecting Strange Attractor In Turbulence," Lecture 
Notes in Mathematics, 0. Rand, L. Young (editors), Springer Berlin, 
p366 (1981). 

(19) 0. Farmer, J. Sidorovitch (private communication) . 



• 

·. 

-33-

REFERENCES (continued) 

(20) H.P. Graf et al., "VLSI Implementations of a Neural Net Memory 
with Several Hundreds of Neurons," pl82, A.1.P. Conference Proceedings 
#151, J. Denker (editor), American Institute of Physic!>, NY (1986). 

(21) C. de Boor, "A Practical Guide to Splines," Springer Verlag • . NY 

( 1978). 

(22) M. Maqusi, "Applied Walsh Analysis, 11 Heyden and Sons Ltd .• London. 

England (1981). 

(23) For a reference to the use of trigometric sin transfer functions 
in backpropagation, see E. Baum, A.l.P. Conference Proceedings 
#151, American Institute of Physics, p47 (1986). 

(24) "Kalman Filtering," H.W. Sorenson, editor IEEE Press New York, 

(1985). 

. ) 

. ) 



CX) 

cc 

figure 1 

figure 2 -

Figure 3 -

Figure 4 -

Figure 5 -

Figure 6a -

-34-

f IGURE CAPTIONS 

A plant implemenUng the non I ine.ff transfer function 
x • x2 

A linear feedforward neural net representation for linear 

prediction. 

A feedforward neural net with a nonlinear hidden layer 

for prediction. Arrows schematically indicate the feed

forward connections fro111 Input to Hidden to Output layers. 

The transfer function g( } of a hidden unit is commonly 

taken to be a nonlinear. siQllOidal function with range 

0 .. 1. This is a plot of g(x} = l.i(l + tanh(x}}. The 

_exact analytic fora of .. the - sig110id is not critical to 

results. 

A network with 5 nonlinear hidden units used to predict 

x(t + 1) given x(t). The arrows scheutically indicate 

connections frOflt the Input layer to all the units in the 

Hidden layer. as well as connections fro• all Hidden 

units to the Output unit. Also. the Input layer dfrectly 

connects to the Output layer. 

A plot of x(t} vs t for a t i11e span of 500 time steps 

in units where t = 17 for the Mackey-Glass eo.uation {15). 

There is a quasiperiodicity. however details of the bumps 

change chaotically over time . 

. ) 

Figure 6b - : Figure· 6b .i~ a s imi.lar plot to Figure 6a for t = 30. 

Figure 7 - The 2 Hidden l~yer network architecture for prediction 

in the Mackey-Glass equation {15). The arrows schematically 

indicate connections from Input to Hidden to Output layers . 



Fiqure Sa -

Figure 8b -

Figure 9 -

Figure 10 -

-35-

FIGURE CAPTIONS (continued) 

A plot of the normalized rootme~n •,q11.tr"e error (the 

root mean square error divided by the •. t.111dard deviation 

of the data) versus . prediction time c,t .. p , P, into the 

future for the Mackey-Glass equation di = 17 . Five 

curves are shown, labelled A, B, C, 0, l . A = Six th order 

polynomial (iterated from P = 6) . B :- rhe linear Pre-

dictfve method. C = Sixth order polynomial trained at 

each prediction time step, P. 0 = Nonlinear neural net 

trained at each prediction time step, P. E = Nonlinear 

neural net (iterated from P = 6). The iterated polynomial 

is wildly unstable and quickly blows up . The iterated 

nonlinear r.eurJl net performs be~t. 

An identical plot to Figure 8a except for the Mackey

Gl_a:ss equation at t = 30. The labelling of the curves 

is the same. The success of the iterated nonlinear neural 

net method is even llOre evident. 

The Z Hidden layer network architecture for modelling 
·2 x • x . The arrows sche.atically indicate connections 

from Input to Hidden to Output layers. Another net

work, with a single layer of 40 hidden units perfor11ed 

CQllParably to the Z layer network. 

A graph of x2 = (x(t) - x(t -At]/{At~ 2 where ~t = . 001 

and z = x2 is p 1 ot ted as a function 0 t two independent 

variables x = x(t), y = x(t - At). The axes have been 

rotated so that one is looking straight down a parabolic 

trough. . In the rotated coordinate system, the region . ) 

x(t) ::: . ?<(t - ._'OOl) is along the bottom of the trough. 

The horizonal, ., 45 degree and vertical lines represent the 

x, y, z axes . ~ The z axis has been drawn to the left of 

the parabola to avoid cluttering the paraboli c surface. 



Figure 11 -

Figure 12 -

I ~ Figure 13 -

. 36-

FIGURE CAPTIONS (continued) 

The output of the network in Figure 9 plotted·•·· a fun

ction of the two input 11ariables. The range o1 the plot 

has been considerably extended past the range (Jf validity 

of the map . The x and y axes ex tend to f ron1 -1 to 1 

while Z extends from 0 to 5.125. The range of validity, 

x(t) - x(t - 6t), is along the bottom of the trough 

because we have rotated axes so that one is looking 

straight down the trough. 

A blow up of the bottom of the trough in Figure 11. lt 

is only the bottom of the trough in Figure 11 that is 

relevant. The axes are rotated so that one is looking 

straight down a parabolic trough. 

A plot of successive sms of tenas of equation (20. The 

first winde>W contains tennl as a solid line and tera2, 

to be added in, as a dotted line. ·window(2) shows the 

SUl'I of terw(l) + term(Z} as a solid line and tenn{3}. 

to be added in as a dotted line, and so on. Window{6} 

contains the sU111 of al 1 6 tenas of equation (20) plotted 

as a final solid 1 ine. Each tick 111ark is one unit, so 

that the approxi111ation to the parabolic 11ap, Eqn. {22), 

is contained in the region 0 • 1. Recall that the nonaal-

ized root mean suare predictive accuracy of this map 

was 1.4 x 10-4, i.e. it is an excellent approximation. 

Portions of the graphs in windows(l) to window(6) outside 

the valid range of 0 .. l are plotted so that the form 

of each siginoid that is added together 111ay be seen . 

. } 



a I .. 
•>C 

1 

~ -
GI 

~ 

I.. 
~ 
OI .... 

u.. 

'oq 1 - s -- .. )( 
~ 



~ 

i 
~ 
:» 
0 

---)( 
- - (\,I 413 413 

QJ • ft I 
~ + - ~ .. - C7\ 

4.11 - )( -)( ..... 

~ 
--)( 

v 



·-"' 

C'.) 

c: 

I I 
/ 

•• 

I 

. ) 



• 
~ 

- ~ )( -• cu 

"' ::i 
O'I -u. 



I 
. 

· ~ 



1. 315 

{\ /\ 
' 

1 ~ 
I \ 

\ 

:l201,.._ _______ --1.1. ______________ _ 

"q'" 1. 0 50-J. c 

Figure 6a 

. ) 

. ) 





• 

!.fl 

. , . 

I 

• • • 

. ) 

. i' 

• • ..... 

• QI 
~ 
::> 
C7> • -~ 

• 

· ; 



10 

-· 

1 
0 

. . . 

······--------· .. --
......... ... ... 

_ ...... --.... .. .. . .. -
.............. __ .... ... .. ....... -... -.......................... .. 

. .. . . 

: ---------B • A , . " ' / 
: / ' , -. , .... / 

: ....... / ' ---

. 

. . . . 

: ................. "" ,__.... . ....,, 
: . . . . . 
. . . 

-------- -
................. / 

....... -....... ...,," _ ....... 

/ 
/ 

--- -------

c 

Pr~<atction ~fmestep ~,O (Tau = 8 ??} 
100 

Fig~ re Ba 



l 

.8 

. 6 

.4 

.2 

0 
0 

A C B 0 

i' 
I, 

/1 
: I I 
; I 

: I I 
• I 

I\, :./ I 

I " , 
I j : 
l .: : 
1.. _.: : 

I 

fi : 
tf : 
,; I 

I! : 
I 
I 
I 
I 
I 
I , 

I 
I . 
I 
I 

I 
I 
I 
I 
I . 
• I . 

100 200 300 
Prediction Time P (Tau = 30) 

. ) 

. I 

•: 

Figure Sb 

f 

400 



-
. ,.. 
-4' 

co 

cc 
. ~ . 

• • • • 

. ) 

. ) 

• •• • °' ... • L.. 
:ll 
C7t • .... 
~ 



, ... 
... ' 

co 

cc 

. ) 
. i 

• ; 

Figure 10 



5.125 

I 
I 
I 

. " 

. ; 
. ' 

Figure 11 



l • 

I 

1.0 

"f~ ·" ·~ ~. 

" 
rn 

0.0 

-
co 

a: 

·r 

" 

' -.05 

. ) 

. ) 

0.05 : 

.. 

Figure 12 

! 
! . 

·t 
I 

I 

I ~ 
' 



I 
I 
! ( 1) 

I 

I -
' ........... __ 

I 

I (2) 
I 

I 
: 

(3) 

'" 

~ 

P' 

~ 

.... _ -------

1· 

----11.------------. 
P' 

~ 

... . 

P' . . 
P' 

·~ 

..... 
~ .... 

·~ ' P' ~ 
,_ 

P' ---.. 

. ) 

. ) 

Figure 13 
· -~ 

(4) 

__ ,.,., ____ _ 
.... ------.-- -

(5) 

(6) 




